Commentary: Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans
نویسنده
چکیده
Citation: Hipkiss AR (2016) Commentary: Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans. A commentary on Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans It has recently been reported in this journal that exposure of Caenorhabditis elegans to osmotic stress, induced by sorbitol and trehalose, provokes lifespan extension which appears to be dependent on the upregulation of the enzyme glycerol-3-phosphate dehydrogenase but seemingly independent of previously recognized regulatory agents normally closely associated with aging and lifespan regulation (sirtuin activity, insulin-like growth factor signaling, and AMP kinase function; Chandler-Brown et al., 2015). A possible metabolic explanation is suggested below. It is well recognized that suppression of glycolytic activity can delay age-related dysfunction and extend lifespan (Ingram and Roth, 2015). Aging is frequently accompanied by macromolecular modification induced by toxic metabolites, whose generation is inhibited especially when glycolysis is decreased by procedures such as caloric restriction, intermittent fasting, 2-deoxyglucose, rapamycin-induced mTOR inhibition and insulin and insulin-like growth factor signaling dysfunction. A major age-associated macromolecular post-synthetic modification is non-enzymatic glycosylation (glycation) brought about mostly by way of reactive bicarbonyls, of which methylglyoxal (MG) is a predominant example. MG is a highly reactive decomposition product of the glycolytic triose-phosphate intermediates, dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GA-3-P), which are also potent glycating agents in their own right (Allaman et al., 2015). MG is regarded as a dominant source of the secondary modifications associated with type-2 diabetes (Uchiki et al., 2012; Maessen et al., 2015), and whose generation is increased post-prandially and even more so following consumption of high glycemic index diets (Uchiki et al., 2012; Whitcomb et al., 2015). Aging is frequently accompanied by proteostatic dysfunction which, at least in part, may be due to increased MG generation resulting in glycation of ubiquitin, chaperone proteins and components of the autophagic system (Uchiki et al., 2012). Consequently, those treatments which partially suppress glycolytic flux (outlined above) will suppress glycation by decreasing formation of DHAP and GA-3-P, which in turn will decrease MG generation. Thus it follows that, because osmotic stress induces synthesis of the osmolite glycerol, presumably from glycolytic triosephosphates via the activity of glycerol-3-phosphate dehydrogenase to form glycerol-3–phosphate (which is eventually dephosphorylated
منابع مشابه
Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans
The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. ...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملBlueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans
The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols o...
متن کاملTransaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans
Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded ...
متن کاملPGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila
The mitochondrial unfolded protein response (UPRmt) has been associated with long lifespan across metazoans. In Caenorhabditis elegans, mild developmental mitochondrial stress activates UPRmt reporters and extends lifespan. We show that similar developmental stress is necessary and sufficient to extend Drosophila lifespan, and identify Phosphoglycerate Mutase 5 (PGAM5) as a mediator of this res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015